Creating PCB Elements with Perl

John C. Luciani Jr.
June 24, 2007

1 Pcb 9

This document describes a set of Perl routines that can be used to create component footprints for the
circuit board layout program PCB. These routines reside in a file called Pcb_(n).pm where (n) is the
current revision number of the package. Only the new format of PCB elements is output. The differences
(that T am aware of) between the old and new formats are:

e Dimensions are in hundreths of a mil.
e The argument delimiters are square brackets []
e The element command adds the mark_x and mark_y parameters

e The pin and pad command add clearance and mask parameters.

Requirements

These routines should run with a standard Perl distribution. The only packages used are POSIX and
Carp.

Usage

These routines are object oriented. A PCB object is created using new and all subsequent method
calls use this object. element_begin starts a new element. element_output outputs the element file.
element_add_mark sets the component centroid. element_set_text_xy sets the text position for the ref-
erence designator. The names of the methods used to draw elements all start with the string element_add.
Arguments for the method calls are key-value pairs. The keys are parameter strings defined in pcb.html.

To use these routines in a Perl script to create a PCB element:
1. Include the PCB routines use Pcb_(n);
2. Create a PCB object using new

Begin an element using element_begin

- W

Add copper to the element using element_add_pin or element_add_pad
5. Add silkcreen elements using element_add_line, element_add_arc,

6. Mark the centroid using element_add_mark. The mark can also be set using parameters of the
element_begin method.

7. Add the text location for the reference designator using element_set_text_xy The text location
can also be set using parameters of the element_begin method.

http://bach.ece.jhu.edu/~haceaton/pcb
http://pcb.sourceforge.net/pcb-20050127.html/index.html

8. Output the element to a file using element_output

The simple example in Listing 1 creates a quarter watt through-hole resistor. The example in Listing 3
creates a variety of two terminal SMD footprints ranging in size from 0402 to 2512. The example in
Listing 5 creates Molex 8624 series header connector footprints. The example in Listing 6 creates TQFN
footprints for a variety of Maxim parts. These examples place files in the directory ./tmp. This can be
easily changed by changing the element_begin call.

Listing 1: 1/4 Watt Resistor Example

1 #!/usr/bin/perl

2

3 # Copyright (C) 2005 John C. Luciant Jr.

4

This program may be distributed or modified under the terms of

version 0.2 of the No-Fee Software License published by
John C. Luciant Jr.

H* W R

Creates a 1/4 Watt resistor

11 use strict;
12 use warnings;

14 use Pcb_8;

16 my $Pcb = Pcb_8 -> new(debug => 1);

18 $Pcb -> element_begin(description => ’resistor’,
19 output_file => ’0256W’,

20 dim => ’mils’);

22 # the resistor centroid <¢s at (0,0) and the pins are placed 400 mils
23 # apart

25 my $Body_width = 70; # y direction

26 my $Body_length = 240; # x© direction

27 my @Pins = (-200, O, 200, O0); # =,y pin centers
28 my $Pin_num = 1;

30 while (@Pins) {

31 my ($x, $y) = splice @Pims, 0, 2;

32 $Pcb -> element_add_pin(x => $x, y => 8y,

33 thickness => 55,

34 drill_hole => 35,

35 mask => 10,

36 clearance => 10,

37 pin_number => $Pin_num++);
38}

39

40 $Pcb -> element_add_rectangle(width => $Body_width,

41 length=> $Body_length,
42 thickness => 10,

43 x => 0,

44 y => 0);

45

46 foreach my $sign (-1, 1) {

47 $Pcb -> element_add_line(xl => $sign * $Body_length / 2,
48 yl1 => 0,

49 x2 => $sign * ($Body_length / 2 + 30),
50 y2 => 0,

51 thickness => 10);

52}

53
54

55 $Pcb -> element_set_text_xy(x => -$Body_length/2,

56 y => -$Body_width/2 - 20);
57

58

50 $Pcb -> element_output();

2 new

Usage

Pcb_9->new((parameter list))

Description

Creates an object that is used to make PCB element files. Default parameters for the various element
drawing commands can be initialized using a key-value parameter list. The valid keys and default values

are in Table 1

Parameter Name Default Value Notes

line_thickness 10 thickness used in drawing silkscreen lines

arc_thickness 10 thickness used in drawing silkscreen arcs

thickness 10 thickness used in drawing any silkscreen line

pin_flags 0 flags used in creating element pins (See Table 16)

pad_flags PAD_SQUARE flags used in creating pads

font_size 50 size in 777 of the silkscreen found

clearance 10 separation of pad from other conductors on the layer .

mask 10 distance between the edge of the solder mask and the copper pad.
This definition differs fromthe PCB definition of mask.

debug 0 debug messages. no messages (0). object methods (1). object

methods + internal subroutines (2)

Table 1: Keys for Method new

Example

To create a new object that will display object method debugging messages:

my $Pcb = Pcb_9 -> new(debug => 1);

3 element begin

Usage

Pcb->element_begin((parameter list))

Description

Initializes a new Pcb element. If an element was previously created but not output a call to element_begin
will remove it. The valid keys and default values are in Table 2

Parameter Name Default Value Notes

flags 0 Element flags. See Table 13
description ’0 Text description of the footprint
layout_name) Reference designator used on the PCB.
value ? Value of component in the PCB. Leave blank.
mark_x 0 X location of the footprint mark (in mils)
mark_y 0 Y location of the footprint mark (in mils)
text_x 0 X location of the refdes text (in mils)
text_y 0 Y location of the refdes text (in mils)
direction 0 Text direction flags. See Table 14
scale 100 Text scale.
text_flags 0 See Table 15
output_file ’PCB_ELEMENT.TMP’ Element filename
pin_one_square 0 Sets a default value that is used when creating a pin.
dim ‘mils’ units default to mils
Table 2: Keys for Method element_begin
Example

To begin a 1/4 Watt resistor element with dimension values in mils:

$Pcb -> element_begin(description => ’resistor’,
output_file => 2025W’,
dim => ’mils’);

4 element output

Usage

Pcb->element_output ((parameter list))

Description

element_output outputs the element drawing commands to a file. At this time there are no parameters
that are valid for the (parameter list).

5 element_add_line

Usage

Pcb->element_add_line((parameter list))

Description

Creates a silkscreen line of a specified thickness (thickness) between two points (x1, y1) and (x2, y2).

Parameter Name Default Value Notes

x1 X coordinate of the first point.
yl Y coordinate of the first point.
x2 X coordinate of the second point.
y2 Y coordinate of the second point.
thickness Width of the line.

Table 3: Keys for Method element_add_line

Example

To create a 200mil long silkscreen line that is centered at (0,0) that is 10 mils thick
$Pcb -> element_add_line(xl => -100, yl1 => O,
x2 => 100, y2 => 0,
thickness => 10);
6 element add arc
Usage

Pcb->element_add_arc((parameter list))

Description

Creates a silkscreen arc with a specified width and length centered at a point (x1, y1).

Parameter Name Default Value Notes

b X coordinate of the point.

y Y coordinate of the point.

width horizontal width of the arc

height vertical length of the arc
start_angle Starting angle of the arc (degrees)
delta_angle Angle swept by the arc (degrees)
thickness line thickness

Table 4: Keys for Method element_add_arc

Example

To create a silkscreen circular arc centered at (0,0) with a line thickness of 10 mils, radius of 200 mils
that starts at 45° and sweeps for 135°:

$Pcb -> element_add_arc(start_angle => 45,
delta_angle => 135,
x => 0,
y => 0,
width => 200,
height => 200,
thickness => 10);

For an ellipse set the width and height to unequal values.

7 element add pin

Usage

Pcb->element_add pin((parameter list))

Description

Adds a pin to an element

Parameter Name Default Value

X
Yy
thickness
clearance
mask

drill_hole
name
pin_number

flags

Notes

X coordinate of the point.

Y coordinate of the point.

width of the copper pad

separation of pad from other conductors on the layer .

distance between the edge of the solder mask and the copper pad.
This definition differs fromthe PCB definition of mask.

diameter of the hole that is drilled at the center of the pad

string

The pin number of the component pin that will inserted at this
position.

See Table 16

Table 5: Keys for Method element_add_pin

Example

To place a pin with a round pad at (-100,0) with a pad diameter of 55 mils, a drill hole diameter of 35
mils, soldermask clearance of 10 mils, a copper clearance of 9 mils, and a pin number of one:

$Pcb -> element_add_pin(x => -100, y => 0,

thickness

=> 55,

drill_hole => 35,
mask => 10,
clearance => 9,
pin_number => 1);

8 element_add pad

Usage

Pcb->element_add_pad((parameter list))

Description

Pads are created by drawing a line, with a specified thickness, between two points. The line is drawn
with a square nib and extends beyond each end point by a distance of ixess,

Parameter Name Default Value

x1

yl

x2

y2
thickness
clearance
mask

name
pad_number
flags

Notes

X coordinate of the first point.

Y coordinate of the first point.

X coordinate of the second point.

Y coordinate of the second point.

Width of the line.

separation of pad from other conductors on the layer .
distance between the edge of the solder mask and the copper pad.
This definition differs fromthe PCB definition of mask.
Identification string for the pad

The pin number of the component that will reside on the pad.
See Table 17

Table 6: Keys for Method element_add_line

Example

To create a pad that is centered at (0,0) that is 100 mils long and 50 mils thick
has a soldermask clearance of 10 mils, a copper clearance of 9 mils and is numbered one:

$Pcb -> element_add_pad(xl => -25, y1 => 0,
x2 => 25, y2 => 0,
thickness => 50,
mask => 10,
clearance => 9,

pad_number => 1);

9 element_add pad. rectangle

Usage

Pcb->element_add_pad_rectangle((parameter list))

Description

Create a pad with a specified width and length that is centered at a point (x,y). The length is in
x-direction and the width is in the y-direction.

Parameter Name Default Value

X

Yy
width

length
clearance
mask

name
pin_number

Notes

X coordinate of the point.

Y coordinate of the point.

The pad width (y direction)

The pad length (x direction)

separation of pad from other conductors on the layer .

distance between the edge of the solder mask and the copper pad.
This definition differs fromthe PCB definition of mask.
Identification string for the pad

The pin number of the component pin that will inserted at this
position.

Table 7: Keys for Method element_add_pad_rectangle

10 element_add pin oval

Usage

Pcb->element_add pin_oval((parameter list))

Description

Create a pad with a specified width and length that is centered at a point (x,y). The length is in
x-direction and the width is in the y-direction. The corners of the pad are rounded.

This is actually a hybrid object consisting of a component side pad, a solder side pad and a pin placed
at the same center point.

Parameter Name Default Value Notes

b X coordinate of the point.

y Y coordinate of the point.

width The pad width (y direction)

length The pad length (x direction)

drill_hole diameter of the hole that is drilled at the center of the pad

name Identification string for the pad

pin_number The pin number of the component pin that will inserted at this
position.

Table 8: Keys for Method element_add_pin_oval

Example

To place a pin with an oval pad at (-100,0) with a pad diameter of 55 mils, a drill hole diameter of 35
mils, soldermask clearance of 10 mils, a copper clearance of 9 mils, and a pin number of one:

$Pcb -> element_add_pin_oval(x => -100, y => 0,

thickness => bb,
drill_hole => 35,
mask => 10,
clearance => 9,
pin_number => 1);

11 element_add mark
Usage

Pcb->element_add mark((parameter list))

Description
The mark is a positioning hint. element_add_mark places the mark at at a point (x1, y1).
Parameter Name Default Value Notes

b X coordinate of the point.
y Y coordinate of the point.

Table 9: Keys for Method element_add_mark

12 element_add lines

Usage

Pcb->element_add lines((parameter list))

Description

Draws silkscreen lines using the specified line end points. Lines are drawn from point to point until all
the points are connected.

Parameter Name Default Value Notes

points reference to a list containing x,y coordinates for line end points.
thickness Width of the line.

Table 10: Keys for Method element_add_lines

13 element_add rectangle

Usage

Pcb->element_add rectangle((parameter list))

Description

Draws a silkscreen rectangle with a specified width and length at a point (x1, y1).

Parameter Name Default Value Notes

b X coordinate of the point.

y Y coordinate of the point.
width rectangle width (y direction)
length rectangle length (x direction)
thickness Width of the line.

Table 11: Keys for Method element_add_rectangle

14 element set_text xy

Usage

Pcb->element_set_text_xy((parameter list))
Description

Sets the position of the reference designator text.

Parameter Name Default Value Notes

b X coordinate of the point.
y Y coordinate of the point.
font _size

Table 12: Keys for Method element_add_mark

15 element_set

Usage

Pcb->element_set ((parameter list))

Description

Sets values in the element hash table. This should be the only method used to set values in the element
hash. (parameter list) contains key-value pairs.

16 element_get

Usage

Pcb->element_get ((parameter list))

Description

Returns a value, from the element hash, for each key specified in (parameter list). If the value is undefined
in the element hash then a value from the Pcb object hash is returned. A value of undef is returned if
neither hash contains a defined value for the key.

This should be the only method used to retrieve values from the element hash. (parameter list) contains
a list of keys.

17 get

Usage
Pcb->get ((parameter list))

Description

Retrieves values from the PCB object hash. This should be the only method used to retrieve values from
the PCB object hash. (parameter list) contains a list of keys.

18 element dump

Usage

Pcb->element _dump((parameter list))

Description

A debugging procedure that Prints out the element command drawing commands to STDOUT.

10

References

Brorson, S. D., & Meier, S. (2005, January). Footprint creation for the open-source layout program PCB.
(Retrieved February 6, 2005, from http://www.brorson.com/gEDA/land_patterns_20050129.
pdf)

Eaton, H., & Nau, T. (2002). Pcb [Computer software and manual]. (Retrieved February 7, 2007 from
http://pcb.sourceforge.net/pcb-cvs/pcb.html)

11

http://www.brorson.com/gEDA/land_patterns_20050129.pdf
http://www.brorson.com/gEDA/land_patterns_20050129.pdf
http://pcb.sourceforge.net/pcb-cvs/pcb.html

19 Change Log

Pcb_9

Pcb_8

Pcb_7

Pcb_6

Pcb_5

Pcb_4

Pcb_3

277 jel

19-Mar-2007 jcl

25 March 2005 jecl

22 March 2005 jecl

6 March 2005 jcl

27 February 2005 jcl

7 February 2005 jcl

20 Element Flags

1. Fixed a dimension scaling bug in element_add_lines. The scaling
routine now scales an array of points. This bug was reported by
Ben Jackson.

2. The scaling routines now accept a dimension suffix which will
override the default dimension.

1. Removed the export of element_add_arc. Not necessary (OO).
2. Corrected the mask and clearance parameters in the pin, pad
and pin_oval procedures.

3. Removed the Mark command since the mark data is now in the
Element header.

4. Exported element_str and added a scale_factor parameter (de-
fault value of 100)

5. the key to specify dimensional units (input_dim) was changed
to dim

6. Fixed the dimension scaling problem in add_element_lines

7. Corrected the documentation for element_add_pin_oval

1. changed the definition of the mask and clearance.

2. Fixed the mask and clearance parameters in the pin, pad and
pin_oval procedures.

1. The element_add_rectangle command now uses the x and y
parameters. The center of the rectangle was always placed at (0,0)
2. The pin_one_square key-value pair was not getting properly
tested in the element_add_pin procedure.

3. Added the clearance and the mask parameters to
element_add_pad_rectangle.

1. Added the element_add_lines command.

2. added the element_add pin_oval command.

3. Modified the debug print messages.

4. Fixed constant for octagonal pads.

5. Fixed errors in the EXPORT_OK and EXPORT_TAGS decla-
rations.

6. Added element_get names.

1. Modified the debug strings to output mm and mils.

2. Fixed the scale_factor subroutine. scale_factor did not
correctly convert from mils to mm. I did not test (or use) the
conversion to mm until I modified the debug strings

Initial Release

The element flag field determines the state of an element. The bit values are:

Parameter Name
ELEMENT_NAME_HIDDEN
ELEMENT_SELECTED
ELEMENT_SOLDER_SIDE

Default Value Notes
0x10
0x40
0x80

bit 4: the element name is hidden
bit 6: element has been selected
bit 7: element is located on the solder side

Table 13: Element Flags

12

21 Text Flags

Parameter Name Default Value Notes

TEXT_DIRECTION_O 0 Horizontal
TEXT_DIRECTION_90 1 90 degrees counter-clockwise
TEXT_DIRECTION_180 2 180 degrees counter-clockwise
TEXT_DIRECTION_270 3 270 degrees counter-clockwise

Table 14: Text Direction Flags

Parameter Name Default Value Notes

TEXT_SELECTED 0x40 bit 6: the text has been selected
TEXT_ON_SOLDER_SIDE 0x80 bit 7: the text is on the solder (back) side of the board
TEXT_ON_SILKSCREEN 0x400 bit 10: the text is on the silkscreen layer

Table 15: Text Flags

22 Pin Flags

Parameter Name Default Value Notes

PIN_MASK OxFFFD
PIN_ALWAYS_SET 0x0001 bit 0: always set
bit 1: always clear
PIN_CONNECTED 0x0004 bit 2: set if pin was found during a connection search
PIN_MOUNTING_HOLE 0x0008 bit 3: set if pin is only a mounting hole (no copper annulus)
PIN_DISPLAY_NAME 0x0020 bit 5: display the pins name
PIN_SELECTED 0x0040 bit 6: pin has been selected
PIN_SQUARE 0x0100 bit 8: pin is drawn as a square
PIN_OCTAGONAL 0x0800 bit 12: set if pin is drawn with an octagonal shape
PIN_ROUND 0x0000
PIN_SHAPE_MASK OxEEFF

Table 16: Pin Flags

23 Pad Flags

Parameter Name Default Value Notes

PAD_CONNECTED 0x0004 bit 2: set if pad was found during a connection search
PAD_DISPLAY_NAME 0x0020 bit 5: display the pads name

PAD_SELECTED 0x0040 bit 6: pad has been selected

PAD_SOLDER_SIDE 0x0080 bit 7: pad is located on the solder side

PAD_SQUARE 0x0100

PAD_ROUNDED 0x0800 bit 11: pad has rounded corners

Table 17: Pad Flags

13

24 Examples

=
s O © W N O AW N

O R S T = = I~
KON = O ©wN o ok W N

25
26
27
28
29
30
31

33
34
35
36
37
38
39
40

Listing 2: TO220 Pads

#!/usr/bin/perl
Copyright (C) 2007 John C. Luciani Jr.
This program may be distributed or modified under the terms

version 0.2 of the No-Fee Software License published by
John C. Luciani Jr.

H* W R

Places three rounded pads with holes spaced 100 mils.

use strict;
use warnings;

use Pcb_8;
my $Pcb = Pcb_8 -> new(debug => 1);

$Pcb -> element_begin(description => ’T0220-pads’,
output_file =>
"tmp/" . ’T0220-pads’,
dim => ’mils’);

my $pin_num = 1;
my @pos = (-100, 0, O, O, 100, 0);

while (@pos) {

my ($x, $y) = splice @pos, 0, 2;

$Pcb -> element_add_pin_oval(x => $x,
y => $y,
width => 80,
length => 66,
name => ’’,
pin_number => $pin_num++,
clearance => 10,
drill_hole => 46,
mask => 10);

$Pcb -> element_output ();

of

14

=
= O © 0N T AW N R

= e
oW N

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

51

Listing 3: SMD Element Creation Example

#!/usr/bin/perl

Copyright (C) 2005 John C. Luciant Jr.

This program may be distributed or modified under the terms of

wersion 0.2 of the No-Fee Software License published by

John C. Luciant Jr.

Creates the PCB elements specified in the DATA section. The

footprints are for the SMD packages 0402, 0603, 0805, 1206, 1210,
2010, 2512, 0402, 0504, 0603, 0805, 1206, 1210, 1812, 1825

use strict;
use warnings;

use Pcb_9;
my $Pcb = Pcb_9 -> new(debug => 1);

my @Fields = qw(land_pattern_length land_row_distance
land_width land_length
land_row_centers grid);

while (<DATA>) {
s/\#.*x//; # Remove comments
s/"\sx//; # Remove leading spaces
s/\s*$//; # Revove trailing spaces
next unless length; # Skip empty lines
my ($type, @values) = split /\s*\\sx*/;

hash for each footprint
my %f = map { $_ => shift(@values) } QFields;

$Pcb -> element_begin(description => ’SMD’,
output_file => "tmp/$type",
dim => ’'mm’);

my $x = -$f{land_row_centers} / 2;
foreach my $pin_num (1..2) {
$Pcb -> element_add_pad_rectangle (width => $f{land_width},
length=> $f{land_length},
x => $x,
y => 0,
name => ’input’,
mask => 0.254,
clearance => 0.254,
pin_number => $pin_num);
$x += $f{land_row_centers};

}

Draw a silkscreen rectangle around the component. A silkscreen
specification that all PCB wendors should be able to meet 4is

10mil line width and 10mil spacing. The silkscreen line width

defaults to 10mils. To achieve the proper spacing we add

30mils (0.762mm) to the mazimum extents of the copper pads

(10mils on either side of the copper and 2%5 mils for the

silkscreen line).

my $length = $f{land_pattern_length} + 0.762;

my $width = $f{land_width} + 0.762;

$Pcb -> element_add_rectangle(width => $width,
length=> $length,
x => 0,
y => 0);

Place the refdes slightly (0.5mm) above the upper left corner of

the outline rectangle.

$Pcb -> element_set_text_xy(x => -$length/2,
y => -$width/2 - 0.5);

15

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

$Pcb -> element_output ();

package name

overall length of land pattern

distance between land rows

land width

land length

center-to-center spacing between land Tows
number of 0.5mm by 0.5mm elements

Z G X Y c Grid
2.20 0.40 0.70 0.90 1.30 2x6
2.40 0.40 1.30 1.00 1.40 4x6
2.80 0.60 1.00 1.10 1.70 4x6
3.20 0.60 1.50 1.30 1.90 4x8
4.40 1.20 1.80 1.60 2.80 4x10
4.40 1.20 2.70 1.60 2.80 6x10
5.80 2.00 3.40 1.90 3.90 8x12
5.80 2.00 6.80 1.90 3.90 14x12
6.20 2.60 2.70 1.80 4.40 6x14
7.40 3.80 3.20 1.80 5.60 8x16

16

=
= O © 0N T AW N R

= e
oW N

15
16
17
18
19
20
21
22
23
24
25

Listing 4: Header Connector Creation Example 1

#!/usr/bin/perl

#

H* R

#

Copyright (C) 2005 John C. Luciani Jr.
This program may be distributed or modified under the terms of
version 0.2 of the No-Fee Software License published by

John C. Luciani Jr.

Creates the PCB elements for Molex 8624 header connectors

use strict;
use warnings;

use Pcb_8;

my $Pcb = Pcb_8 -> new(debug => 1);

my Q@Fields = qw(circuits body_length pin_row_length);

my @Def; # definitions that are common to all compomnents

while (<DATA>) {

s/\#.*//; # Remove comments

s/"\sx//; # Remove leading spaces
s/\s*$//; # Revove trailing spaces
next unless length; # Skip empty lines

Lines that contain an ’=’ are global definitions.
push(@Def, $1, $2), next if /(\S+)\s*=\s*x(\S.*)/;
my @values = split /\s*\ \sx*x/;

hash for each footprint

my %f = (@Def,
map { $_ => shift(@values) } QFields);

$Pcb -> element_begin(description => ’TH’,
output_file =>
"tmp/" . &package_name ($f{circuits}, $f{pin_rows}),
dim => ’mils’,
pin_one_square => 1);

my $pin_num = 1;
my $pins_per_row = $f{circuits} / 2;

lower left cormer ts pin one

my $x = -$f{pin_spacing} * ($pins_per_row - 1) / 2;
$f{row_spacingl} / 2;

8
<
-
<
]

These header connectors consist of two rows of pins. With pin
one in the lower left corner we will place pins from left to
right until half the pins are placed. At the halfway point we
will shift to the top row and place pins from right to left.

while ($pin_num <= $f{circuits}) {
$Pcb -> element_add_pin(x => $x, y => $y,
thickness => 66,
drill_hole => 486,
mask => 10,
clearance => 10,
pin_number => $pin_num);

If this ts the last pin wn the row then
update the y wvalue otherwise update the =
value. If we are past the halfway point move
left (-) instead of right (+).

* W KRR

$y *= -1;
$x += $f{pin_spacingl} if $y > 0;

17

73
74
75
76
77
78
79
80
81
82
83
84
85

136

$pin_num++;

$Pcb -> element_add_rectangle(width => $f{body_width},

length=> $f{body_length},
x => 0,
y => 0);

$Pcb -> element_set_text_xy(x => -$f{body_lengthl}/2,

$Pcb -> element_output();

sub package_name (3) {
my ($circuits,
sprintf ("CON_HDR-254P-%iC
$circuits/$rows,
$rows,
$circuits);

}

__DATA__
body_width = 200
pin_spacing = 100
row_spacing = 100
pin_diameter = 35
pin_rows = 2

circutits

4 190 100

6 290 200

8 390 300
10 490 400
12 590 500
14 690 600
16 790 700
18 890 800
20 990 900
22 1090 1000
24 1190 1100
26 1290 1200
28 1390 1300
30 1490 1400
32 1590 1500
34 1690 1600
36 1790 1700
38 1890 1800
40 1990 1900
42 2090 2000
44 2190 2100
46 2290 2200
48 2390 2300
50 2490 2400
52 2590 2500
54 2690 2600
56 2790 2700
58 2890 2800
60 2990 2900
62 3090 3000
64 3190 3100
66 3290 3200
68 3390 3300
70 3490 3400
72 3590 3500
74 3690 3600
76 3790 3700

body_length

y => -$f{body_width}/2 - 20);

ZYiR-%iN__Molex_8624 -Series",

pin_row_length

18

146
147

78
80

3890
3990

3800
3900

19

Listing 5: Header Connector Creation Example 2

#!/usr/bin/perl
Copyright (C) 2005 John C. Luciant Jr.
This program may be distributed or modified under the terms of

version 0.2 of the No-Fee Software License published by
John C. Luciani Jr.

H* R

Creates the PCB elements for Molex 8624 header connectors

=
= O © 0N T AW N R

use strict;
use warnings;

= e
oW N

use Pcb_8;

i my $Pcb = Pcb_8 -> new(debug => 0);

g my Q@Fields = qw(circuits body_length pin_row_length);

; my @Def; # definitions that are common to all compomnents
Z while (<DATA>) {

23 s/\#.*//; # Remove comments

24 s/"\sx*x//; # Remove leading spaces

25 s/\s*$//; # Revove trailing spaces

26 next unless length; # Skip empty lines

27

28 # Lines that contain an ’=’ are global definitions.

29

30 push(@Def, $1, $2), next if /(\S+)\s*=\s*x(\S.*)/;

31

32 my @values = split /\s*\ \s*/;

33

34 # hash for each footprint

35

36 my %f = (@Def,

37 map { $_ => shift(@values) } QFields);

38

39 $Pcb -> element_begin(description => ’TH’,

40 output_file =>

41 "tmp/" . &package_name ($f{circuits}, $f{pin_rows}),
42 dim => ’mils’,

43 pin_one_square => 1);

44

45 my $pin_num = 1;

46 my $pins_per_row = $f{circuits} / 2;

47

48 # lower left cormer ts pin one

49

50 my $x0 = -$f{pin_spacing} * ($pins_per_row - 1) / 2;

51 my $y0 = $f{row_spacing} / 2;

52

53 my $x = $x0;

54 my $y = $y0;

55

56 # These header connectors consist of two Tows of pins. With pin
57 # one in the lower left corner we will place pins from left to
58 # right unttl half the pins are placed. At the halfway point we
59 # will shift to the top row and place pins from right to left.

60

61 while ($pin_num <= $f{circuits}) {

62 $Pcb -> element_add_pin(x => $x, y => 8y,

63 thickness => $f{pad_thickness},

64 drill_hole => $f{drill_hole},

65 mask => 10,

66 clearance => 10,

67 pin_number => $pin_num);

68

69 # Header conmmnectors wusually have pins numbered from left to
70 # right with odd numbers on the bottom and even numbers on the
71 # top. Since this exzample program could be used for connectors
72 # other than headers three pin-numbering options are provided.

20

73
74
75
76
77
78
79
80
81
82
83
84
85

136

header - two Tows of pins. numbers increase from left to right.

odd numbered pins on the bottom, even on the top.

dip - two rows of pins. starting in the lower left corner

numbers increase left to right along the bottom row

and right to left along the top rouw.

power - two Tows of pins. numbers increase from left to right

starting on the bottom row and then continue left to right
along the top rouw.

if ($f{pin_numbering_scheme} eq ’header’) {
$y *= -1;
$x += $f{pin_spacingl} if $y > 0;

} elsif ($f{pin_numbering_schemel} eq ’dip’) {

if ($pin_num == $pins_per_row) {
$y -= $f{row_spacing};
} else {

$x += $pin_num > $pins_per_row
? -$f{pin_spacing}
: $f{pin_spacing};

}
} elsif ($f{pin_numbering_scheme} eq ’power’) {

if ($pin_num == $pins_per_row) {
$y -= $f{row_spacing};
$x = $x0;
} else {
$x += $f{pin_spacing}
}
} else {
die "unknown pin numbering scheme $f{pin_numbering_schemel} ";
}
$pin_num++;
}
$Pcb -> element_add_rectangle(width => $f{body_width},
length=> $f{body_length},
x => 0,
y => 0);
$Pcb -> element_set_text_xy(x => -$f{body_lengthl}/2,
y => -$f{body_width}/2 - 20);
$Pcb -> element_output ();
}
sub package_name (3) {
my ($circuits, $rows) = 0_;
sprintf ("CON_HDR-254P-%iC-%iR-%iN__Molex_8624-Series",
$circuits/$rows,
$rows,
$circuits) ;
}

__DATA_

pad_thickness = 66

drill_hole = 46
pin_numbering_scheme = header
body_width = 200

pin_spacing = 100

row_spacing = 100
pin_diameter = 35

pin_rows

#

4
6
8

ciTCcut

190
290
390

=2
ts body_length pin_row_length
100

200
300

21

165

175

490
590
690
790
890
990
1090
1190
1290
1390

1490
1590
1690
1790
1890
1990
2090
2190
2290
2390
2490
2590
2690

2790
2890
2990
3090
3190
3290
3390
3490
3590
3690
3790
3890
3990

400
500
600
700
800
900
1000
1100
1200
1300

1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600

2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900

22

Listing 6: TQFN Element Creation Example

#!/usr/bin/perl
Copyright (C) 2005 John C. Luciant Jr.
This program may be distributed or modified under the terms of

version 0.2 of the No-Fee Software License published by
John C. Luciani Jr.

H* R

Creates Maxzim TQFN style packages.

=
= O © 0N T AW N R

Data is from the Mazim 21-0140 Rev G and Mazim 21-10159 Rev A
specifications.

[
AW
®* ®

The TQFN (thin quad flat no-lead) packages have solder terminations
on four sides and a thermal pad in the center. The two denser
packages (T3255-2 and T4055-1) require smaller pads on the corner
terminations.

15
16
17
18
19 use strict;

20 use warnings;

21 use Carp;

22

23 use Pcb_8; # routines to create PCB elements (packages)
24

25 my $Pcb = Pcb_8 -> new(debug => 0);

H* WKW

27 # The specifications to generate these symbols %is in the __DATA__
28 # section of this file. Each line can be either blank, contain a global
290 # definttion or contain a package data Tecord.

31 # Global definitions are saved in @Def.
32 # The field mnames for the package data Tecord are in @Ftelds.

34 my @Def; # Global definitions saved as key-value pairs.
35 my Q@Fields = qw(package_code

36 pin_count

37 pad_spacing

38 pad_width

39 pad_length

40 corner_pad_length

41 thermal_pad_width

42 thermal_pad_length);
43

44 # Read the DATA section and output a PCB footprint everytime a

45 # package data Tecord is read.

47 while (<DATA>) {

43 last if /" __END__$/;

49 s/\#.*//; # Remove comments

50 s/"\sx//; # Remove leading spaces

51 s/\s*$//; # Revove trailing spaces

52 next unless length; # Skip empty lines

53

54 # Lines that contatin an ’=’ are global definitions. The key (lhs)
55 # and value (rhs) are pushed onto @Def.

56

57 push(@Def, $1, $2), next if /(\S+)\s*=\s*(\S.*)/;

58

59 # A line with non-zero length that %s not a global definition is a
60 # package data record. We split the package record and create a

61 # hash Jp that contains key-value pairs for all of the global

62 # definitions and the current record.

63

64 my @values = split /\s*\ \sx*x/;

65 my %p = (@Def,

66 map { $§_ => shift(@values) } @Fields);

67

68 # Create a simple id using the package name, package code and pin
69 # count and then start a new element.

70

71 $p{id} = join(’-’, map { $p{$_} } qw(package_name package_code pin_count));
72 $Pcb -> element_begin(description => $p{id},

23

73
74
75
76
77
78
79
80
81
82
83
84
85

136

print "$p{i

Create a
data Teco
centroid

H* W R

offsets.

$p{num_pads
$p{corner_p

my $row_cen
my $row_end
my $corner_

Corner pads on some of the parts are shorter.
handled by creating a new pad length and some pad center

output_file => "tmp/$p{id}",
dim => ’mm’);
d\n";

few convenient specifications from data in the package
rd hash. The convenetions for these packages %s part
at (0,0) and pin one is in the lower left corner.

This condition %s

_per_side} = $p{pin_count} / 4; # leads on four sides
ad_length} = $p{pad_length} if $p{corner_pad_length} eq ’’;

ter = ($p{body_width_max} - $p{pad_lengthl}) / 2;
($p{num_pads_per_side} - 1) * $p{pad_spacing} / 2;
offset = ($p{pad_length} - $p{corner_pad_lengthl}) / 2;

@xy contains the staring locations for a Tow of pads.

@inc cont
the corne

my @xy = (x
x
x
x

my @inc= (yinc =>

X

yinc => -$p{pad_spacingl}, xoffset =>

X

ains increment values for = and y and offsets for the
r pads. for each row of pads either = or y %is incremented.

=> -$row_center, y => -$row_end,
=> -$row_end, y => $row_center,
=> $row_center, y => $row_end,
=> $row_end, y => -$row_center);

$p{pad_spacingl}, xoffset => -$corner_offset,
$p{pad_spacing}, yoffset => $corner_offset,
$corner_offset,
inc => -$p{pad_spacing}, yoffset => -$corner_offset);

inc =>

create the rows of pads

Zset_pin_num (1) ;

while (@xy)
my %Xy

&draw_r

{
= (splice(@inc, 0, 4),
map { $_ => $p{$_} } qw(pad_spacing pad_width pad_length));

ow_of_pads (splice(@xy, 0, 4),
%Xy ,
pad_length => $p{corner_pad_length},
num_pads => 1);

no offsets for pads that aren’t on the corners

&draw_r

&draw_r

}

ow_of_pads (%xy,
xoffset => .
yoffset => .
num_pads => $p{num_pads_per_sidel} - 2);
ow_of_pads (%xy,
pad_length => $p{corner_pad_length},
num_pads => 1);

Add the thermal pad

$Pcb -> ele

ment_add_pad_rectangle(x => 0,
y => 09
length => $p{thermal_pad_length},
width => $p{thermal_pad_width},
name => ’’,
pin_number => $p{pin_count} + 1);

add the pin omne dot

my $dot_pos

$Pcb -> ele

= $row_center + 0.254; #$p{pad_length} / 2;

ment_add_arc(x => -$dot_pos,
y => -$dot_pos,

24

146 width => $p{pad_width} / 2,

147 height=> $p{pad_width} / 2,

148 start_angle => 0,

149 delta_angle => 360,

150 thickness => 0.254); # 10 mil lines

151

152 # draw a silksreen rectangle around the package body.

153

154 $Pcb -> element_add_rectangle(x => 0,

155 y => 0,

156 width => $p{body_width_max} + 1,
157 length=> $p{body_length_max} + 1);
158

159 # Set the position of the reference designator to the wupper left corner
160

161 $Pcb -> element_set_text_xy(x => -$p{body_length_max} / 2 - 1,
162 y => -$p{body_width_max} / 2 - 1);
163

164 # Set the centroid mark and output the element

165

166 $Pcb -> element_output;

167

168

169

70 # $v{z} current x location

171 # $v{yl} current y location

172 # $v{pin_num} current pin number

174 my %hv; # wvalues for draw_row_of_pads
175
176 sub set_pin_num ($) {

177 $v{pin_num} = shift;

178

179

180 sub draw_row_of_pads {

181 my %p = (xoffset => 0,

182 yoffset => 0,

183 e_);

184

185 foreach (qw(pin_num x y)) {

186 $v{$_} = $p{$_} if defined $p{$_1};

187 }

188

189 # swap pad length and width for horizontal rouws

190

191 ($p{pad_width}, $p{pad_length}) = ($p{pad_length}, $p{pad_width})
192 if defined $p{xinc};

193

194 foreach (1..$p{num_pads}) {

195 $Pcb -> element_add_pad_rectangle(x => $v{x} + $p{xoffset},
196 y => $v{y} + $p{yoffset},
197 width => $p{pad_width},
198 length => $p{pad_lengthl},
199 name => 27

200 pin_number => $v{pin_num}++);
201 $v{x} += $p{xinc} if defined $p{xinc};

202 $v{y} += $p{yinc} if defined $p{yinc};

203 }

204 }

205

206

207

208

200 1;

210

211

212

213 __DATA__

214 body_width_min = 4.9 # E

215 body_width = 5.0 # E

216 body_width_max = 5.1 # E

217 body_length_min 4.9 # D

218 body_length 5.0 # D

25

219 body_length_max = 5.1 # D

221 component_type = ic
222 package_name = TQFN-Maxim-5x5
223

224 # Final pad_length = pad_lenth + body_width_maz - body_width_min

226 # T1655-1 e (nom) b, L, E2, D2 (maz)
227 # T2055-2 e (nom) b (maz) L, E2, D2 (nom)
228 # T2055-5 e (nom) b (maz) L (min) E2, D2 (mom)

230 # T2855-1 e (nom) b (maz) L (min) E2, D2 (nom)
231 # TR2855-2 e (nom) b (maz) L (min) E2, D2 (maz)

233 # T3255-2 e (nom) b (maz) L (maz) E2, D2 (maz)
234 # T4055-1 e (nom) b (min) L (nom) E2, D2 (min)

237 # e b L L1 E2 D2

238 T1655-1 16 0.8 0.35 0.5 3.2 3.2

239 T2055-2 20 0.65 0.35 0.55 3.10 3.10

240 T2055-5 20 0.65 0.35 0.45 3.25 3.25

241

242 T2855-1 28 0.50 0.30 0.45 3.25 3.25

243 T2855-2 28 0.50 0.30 0.45 2.8 2.8

244

245

246 T3255-2 32 0.50 0.30 0.5 0.25 3.2 3.2

247 T4055-1 40 0.40 0.2 0.5 0.25 3.2 3.2

248

249 # Style (adapted from the Perl Cookbook, First Edition, Recipe 12.4)
250

251 # 1. Names of functions and local variables are all lowercase.
252 # 2. The program’s persistent wvariables (either file lexzicals
253 # or package globals) are capitalized.

254 # 3. Identifiers with multiple words have each of these

255 # separated by an underscore to make it easier to read.

256 # 4. Comnstants are all uppercase.

257 # 5. If the arrow operator (->) 4is followed by either a

258 # method mame or a wvartable containing a method name then
259 # there is a space before and after the operator.

26

	Pcb_9
	new
	element_begin
	element_output
	element_add_line
	element_add_arc
	element_add_pin
	element_add_pad
	element_add_pad_rectangle
	element_add_pin_oval
	element_add_mark
	element_add_lines
	element_add_rectangle
	element_set_text_xy
	element_set
	element_get
	get
	element_dump
	References
	Change Log
	Element Flags
	Text Flags
	Pin Flags
	Pad Flags
	Examples

