
Creating PCB Elements with Perl

John C. Luciani Jr.

June 24, 2007

1 Pcb 9

This document describes a set of Perl routines that can be used to create component footprints for the
circuit board layout program PCB. These routines reside in a file called Pcb_〈n〉.pm where 〈n〉 is the
current revision number of the package. Only the new format of PCB elements is output. The differences
(that I am aware of) between the old and new formats are:

• Dimensions are in hundreths of a mil.

• The argument delimiters are square brackets []

• The element command adds the mark_x and mark_y parameters

• The pin and pad command add clearance and mask parameters.

Requirements

These routines should run with a standard Perl distribution. The only packages used are POSIX and
Carp.

Usage

These routines are object oriented. A PCB object is created using new and all subsequent method
calls use this object. element_begin starts a new element. element_output outputs the element file.
element_add_mark sets the component centroid. element_set_text_xy sets the text position for the ref-
erence designator. The names of the methods used to draw elements all start with the string element_add.
Arguments for the method calls are key-value pairs. The keys are parameter strings defined in pcb.html.

To use these routines in a Perl script to create a PCB element:

1. Include the PCB routines use Pcb_〈n〉;

2. Create a PCB object using new

3. Begin an element using element_begin

4. Add copper to the element using element_add_pin or element_add_pad

5. Add silkcreen elements using element_add_line, element_add_arc,

6. Mark the centroid using element_add_mark. The mark can also be set using parameters of the
element_begin method.

7. Add the text location for the reference designator using element_set_text_xy The text location
can also be set using parameters of the element_begin method.

1

http://bach.ece.jhu.edu/~haceaton/pcb
http://pcb.sourceforge.net/pcb-20050127.html/index.html

8. Output the element to a file using element_output

The simple example in Listing 1 creates a quarter watt through-hole resistor. The example in Listing 3
creates a variety of two terminal SMD footprints ranging in size from 0402 to 2512. The example in
Listing 5 creates Molex 8624 series header connector footprints. The example in Listing 6 creates TQFN
footprints for a variety of Maxim parts. These examples place files in the directory ./tmp. This can be
easily changed by changing the element_begin call.

Listing 1: 1/4 Watt Resistor Example
1 #!/ usr/bin/perl
2

3 # Copyright (C) 2005 John C. Luciani Jr.
4

5 # This program may be distributed or modified under the terms of
6 # version 0.2 of the No -Fee Software License published by
7 # John C. Luciani Jr.
8

9 # Creates a 1/4 Watt resistor
10

11 use strict;
12 use warnings;
13

14 use Pcb_8;
15

16 my $Pcb = Pcb_8 -> new(debug => 1);
17

18 $Pcb -> element_begin(description => ’resistor ’,
19 output_file => ’025W’,
20 dim => ’mils’);
21

22 # the resistor centroid is at (0 ,0) and the pins are placed 400 mils
23 # apart
24

25 my $Body_width = 70; # y direction
26 my $Body_length = 240; # x direction
27 my @Pins = (-200, 0, 200, 0); # x,y pin centers
28 my $Pin_num = 1;
29

30 while (@Pins) {
31 my ($x , $y) = splice @Pins , 0, 2;
32 $Pcb -> element_add_pin(x => $x, y => $y ,
33 thickness => 55,
34 drill_hole => 35,
35 mask => 10,
36 clearance => 10,
37 pin_number => $Pin_num ++);
38 }
39

40 $Pcb -> element_add_rectangle(width => $Body_width ,
41 length=> $Body_length ,
42 thickness => 10,
43 x => 0,
44 y => 0);
45

46 foreach my $sign (-1, 1) {
47 $Pcb -> element_add_line(x1 => $sign * $Body_length / 2,
48 y1 => 0,
49 x2 => $sign * ($Body_length / 2 + 30),
50 y2 => 0,
51 thickness => 10);
52 }
53

54

55 $Pcb -> element_set_text_xy(x => -$Body_length /2,
56 y => -$Body_width /2 - 20);
57

58

59 $Pcb -> element_output ();

2

2 new

Usage

Pcb 9->new(〈parameter list〉)

Description

Creates an object that is used to make PCB element files. Default parameters for the various element
drawing commands can be initialized using a key-value parameter list. The valid keys and default values

are in Table 1

Parameter Name Default Value Notes
line_thickness 10 thickness used in drawing silkscreen lines
arc_thickness 10 thickness used in drawing silkscreen arcs
thickness 10 thickness used in drawing any silkscreen line
pin_flags 0 flags used in creating element pins (See Table 16)
pad_flags PAD_SQUARE flags used in creating pads
font_size 50 size in ??? of the silkscreen found
clearance 10 separation of pad from other conductors on the layer .
mask 10 distance between the edge of the solder mask and the copper pad.

This definition differs fromthe PCB definition of mask.
debug 0 debug messages. no messages (0). object methods (1). object

methods + internal subroutines (2)

Table 1: Keys for Method new

Example

To create a new object that will display object method debugging messages:

my $Pcb = Pcb_9 -> new(debug => 1);

3 element begin

Usage

Pcb->element begin(〈parameter list〉)

Description

Initializes a new Pcb element. If an element was previously created but not output a call to element_begin
will remove it. The valid keys and default values are in Table 2

3

Parameter Name Default Value Notes
flags 0 Element flags. See Table 13
description ’’ Text description of the footprint
layout_name ’’ Reference designator used on the PCB.
value ’’ Value of component in the PCB. Leave blank.
mark_x 0 X location of the footprint mark (in mils)
mark_y 0 Y location of the footprint mark (in mils)
text_x 0 X location of the refdes text (in mils)
text_y 0 Y location of the refdes text (in mils)
direction 0 Text direction flags. See Table 14
scale 100 Text scale.
text_flags 0 See Table 15
output_file ’PCB_ELEMENT.TMP’ Element filename
pin_one_square 0 Sets a default value that is used when creating a pin.
dim ’mils’ units default to mils

Table 2: Keys for Method element begin

Example

To begin a 1/4 Watt resistor element with dimension values in mils:

$Pcb -> element_begin(description => ’resistor ’,
output_file => ’025W’,
dim => ’mils’);

4 element output

Usage

Pcb->element output(〈parameter list〉)

Description

element_output outputs the element drawing commands to a file. At this time there are no parameters
that are valid for the 〈parameter list〉.

5 element add line

Usage

Pcb->element add line(〈parameter list〉)

Description

Creates a silkscreen line of a specified thickness (thickness) between two points (x1, y1) and (x2, y2).

4

Parameter Name Default Value Notes
x1 X coordinate of the first point.
y1 Y coordinate of the first point.
x2 X coordinate of the second point.
y2 Y coordinate of the second point.
thickness Width of the line.

Table 3: Keys for Method element add line

Example

To create a 200mil long silkscreen line that is centered at (0,0) that is 10 mils thick

$Pcb -> element_add_line(x1 => -100, y1 => 0,
x2 => 100, y2 => 0,
thickness => 10);

6 element add arc

Usage

Pcb->element add arc(〈parameter list〉)

Description

Creates a silkscreen arc with a specified width and length centered at a point (x1, y1).

Parameter Name Default Value Notes
x X coordinate of the point.
y Y coordinate of the point.
width horizontal width of the arc
height vertical length of the arc
start angle Starting angle of the arc (degrees)
delta angle Angle swept by the arc (degrees)
thickness line thickness

Table 4: Keys for Method element add arc

Example

To create a silkscreen circular arc centered at (0,0) with a line thickness of 10 mils, radius of 200 mils
that starts at 45◦ and sweeps for 135◦:

$Pcb -> element_add_arc(start_angle => 45,
delta_angle => 135,
x => 0,
y => 0,
width => 200,
height => 200,
thickness => 10);

For an ellipse set the width and height to unequal values.

5

7 element add pin

Usage

Pcb->element add pin(〈parameter list〉)

Description

Adds a pin to an element

Parameter Name Default Value Notes
x X coordinate of the point.
y Y coordinate of the point.
thickness width of the copper pad
clearance separation of pad from other conductors on the layer .
mask distance between the edge of the solder mask and the copper pad.

This definition differs fromthe PCB definition of mask.
drill hole diameter of the hole that is drilled at the center of the pad
name string
pin number The pin number of the component pin that will inserted at this

position.
flags See Table 16

Table 5: Keys for Method element add pin

Example

To place a pin with a round pad at (-100,0) with a pad diameter of 55 mils, a drill hole diameter of 35
mils, soldermask clearance of 10 mils, a copper clearance of 9 mils, and a pin number of one:

$Pcb -> element_add_pin(x => -100, y => 0,
thickness => 55,
drill_hole => 35,
mask => 10,
clearance => 9,
pin_number => 1);

8 element add pad

Usage

Pcb->element add pad(〈parameter list〉)

Description

Pads are created by drawing a line, with a specified thickness, between two points. The line is drawn
with a square nib and extends beyond each end point by a distance of thickess

2 .

6

Parameter Name Default Value Notes
x1 X coordinate of the first point.
y1 Y coordinate of the first point.
x2 X coordinate of the second point.
y2 Y coordinate of the second point.
thickness Width of the line.
clearance separation of pad from other conductors on the layer .
mask distance between the edge of the solder mask and the copper pad.

This definition differs fromthe PCB definition of mask.
name Identification string for the pad
pad number The pin number of the component that will reside on the pad.
flags See Table 17

Table 6: Keys for Method element add line

Example

To create a pad that is centered at (0,0) that is 100 mils long and 50 mils thick
has a soldermask clearance of 10 mils, a copper clearance of 9 mils and is numbered one:

$Pcb -> element_add_pad(x1 => -25, y1 => 0,
x2 => 25, y2 => 0,
thickness => 50,
mask => 10,
clearance => 9,
pad_number => 1);

9 element add pad rectangle

Usage

Pcb->element add pad rectangle(〈parameter list〉)

Description

Create a pad with a specified width and length that is centered at a point (x,y). The length is in
x-direction and the width is in the y-direction.

Parameter Name Default Value Notes
x X coordinate of the point.
y Y coordinate of the point.
width The pad width (y direction)
length The pad length (x direction)
clearance separation of pad from other conductors on the layer .
mask distance between the edge of the solder mask and the copper pad.

This definition differs fromthe PCB definition of mask.
name Identification string for the pad
pin number The pin number of the component pin that will inserted at this

position.

Table 7: Keys for Method element add pad rectangle

7

10 element add pin oval

Usage

Pcb->element add pin oval(〈parameter list〉)

Description

Create a pad with a specified width and length that is centered at a point (x,y). The length is in
x-direction and the width is in the y-direction. The corners of the pad are rounded.

This is actually a hybrid object consisting of a component side pad, a solder side pad and a pin placed
at the same center point.

Parameter Name Default Value Notes
x X coordinate of the point.
y Y coordinate of the point.
width The pad width (y direction)
length The pad length (x direction)
drill hole diameter of the hole that is drilled at the center of the pad
name Identification string for the pad
pin number The pin number of the component pin that will inserted at this

position.

Table 8: Keys for Method element add pin oval

Example

To place a pin with an oval pad at (-100,0) with a pad diameter of 55 mils, a drill hole diameter of 35
mils, soldermask clearance of 10 mils, a copper clearance of 9 mils, and a pin number of one:

$Pcb -> element_add_pin_oval(x => -100, y => 0,
thickness => 55,
drill_hole => 35,
mask => 10,
clearance => 9,
pin_number => 1);

11 element add mark

Usage

Pcb->element add mark(〈parameter list〉)

Description

The mark is a positioning hint. element_add_mark places the mark at at a point (x1, y1).

Parameter Name Default Value Notes
x X coordinate of the point.
y Y coordinate of the point.

Table 9: Keys for Method element add mark

8

12 element add lines

Usage

Pcb->element add lines(〈parameter list〉)

Description

Draws silkscreen lines using the specified line end points. Lines are drawn from point to point until all
the points are connected.

Parameter Name Default Value Notes
points reference to a list containing x,y coordinates for line end points.
thickness Width of the line.

Table 10: Keys for Method element add lines

13 element add rectangle

Usage

Pcb->element add rectangle(〈parameter list〉)

Description

Draws a silkscreen rectangle with a specified width and length at a point (x1, y1).

Parameter Name Default Value Notes
x X coordinate of the point.
y Y coordinate of the point.
width rectangle width (y direction)
length rectangle length (x direction)
thickness Width of the line.

Table 11: Keys for Method element add rectangle

14 element set text xy

Usage

Pcb->element set text xy(〈parameter list〉)

Description

Sets the position of the reference designator text.

Parameter Name Default Value Notes
x X coordinate of the point.
y Y coordinate of the point.
font size

Table 12: Keys for Method element add mark

9

15 element set

Usage

Pcb->element set(〈parameter list〉)

Description

Sets values in the element hash table. This should be the only method used to set values in the element
hash. 〈parameter list〉 contains key-value pairs.

16 element get

Usage

Pcb->element get(〈parameter list〉)

Description

Returns a value, from the element hash, for each key specified in 〈parameter list〉. If the value is undefined
in the element hash then a value from the Pcb object hash is returned. A value of undef is returned if
neither hash contains a defined value for the key.

This should be the only method used to retrieve values from the element hash. 〈parameter list〉 contains
a list of keys.

17 get

Usage

Pcb->get(〈parameter list〉)

Description

Retrieves values from the PCB object hash. This should be the only method used to retrieve values from
the PCB object hash. 〈parameter list〉 contains a list of keys.

18 element dump

Usage

Pcb->element dump(〈parameter list〉)

Description

A debugging procedure that Prints out the element command drawing commands to STDOUT.

10

References

Brorson, S. D., & Meier, S. (2005, January). Footprint creation for the open-source layout program PCB.
(Retrieved February 6, 2005, from http://www.brorson.com/gEDA/land_patterns_20050129.
pdf)

Eaton, H., & Nau, T. (2002). Pcb [Computer software and manual]. (Retrieved February 7, 2007 from
http://pcb.sourceforge.net/pcb-cvs/pcb.html)

11

http://www.brorson.com/gEDA/land_patterns_20050129.pdf
http://www.brorson.com/gEDA/land_patterns_20050129.pdf
http://pcb.sourceforge.net/pcb-cvs/pcb.html

19 Change Log

Pcb 9 ??? jcl 1. Fixed a dimension scaling bug in element add lines. The scaling
routine now scales an array of points. This bug was reported by
Ben Jackson.
2. The scaling routines now accept a dimension suffix which will
override the default dimension.

Pcb 8 19-Mar-2007 jcl 1. Removed the export of element add arc. Not necessary (OO).
2. Corrected the mask and clearance parameters in the pin, pad
and pin oval procedures.
3. Removed the Mark command since the mark data is now in the
Element header.
4. Exported element str and added a scale factor parameter (de-
fault value of 100)
5. the key to specify dimensional units (input dim) was changed
to dim
6. Fixed the dimension scaling problem in add element lines
7. Corrected the documentation for element add pin oval

Pcb 7 25 March 2005 jcl 1. changed the definition of the mask and clearance.
2. Fixed the mask and clearance parameters in the pin, pad and
pin oval procedures.

Pcb 6 22 March 2005 jcl 1. The element add rectangle command now uses the x and y
parameters. The center of the rectangle was always placed at (0,0)
2. The pin one square key-value pair was not getting properly
tested in the element add pin procedure.
3. Added the clearance and the mask parameters to
element add pad rectangle.

Pcb 5 6 March 2005 jcl 1. Added the element add lines command.
2. added the element add pin oval command.
3. Modified the debug print messages.
4. Fixed constant for octagonal pads.
5. Fixed errors in the EXPORT OK and EXPORT TAGS decla-
rations.
6. Added element get names.

Pcb 4 27 February 2005 jcl 1. Modified the debug strings to output mm and mils.
2. Fixed the scale factor subroutine. scale factor did not
correctly convert from mils to mm. I did not test (or use) the
conversion to mm until I modified the debug strings

Pcb 3 7 February 2005 jcl Initial Release

20 Element Flags

The element flag field determines the state of an element. The bit values are:

Parameter Name Default Value Notes
ELEMENT_NAME_HIDDEN 0x10 bit 4: the element name is hidden
ELEMENT_SELECTED 0x40 bit 6: element has been selected
ELEMENT_SOLDER_SIDE 0x80 bit 7: element is located on the solder side

Table 13: Element Flags

12

21 Text Flags

Parameter Name Default Value Notes
TEXT_DIRECTION_0 0 Horizontal
TEXT_DIRECTION_90 1 90 degrees counter-clockwise
TEXT_DIRECTION_180 2 180 degrees counter-clockwise
TEXT_DIRECTION_270 3 270 degrees counter-clockwise

Table 14: Text Direction Flags

Parameter Name Default Value Notes
TEXT_SELECTED 0x40 bit 6: the text has been selected
TEXT_ON_SOLDER_SIDE 0x80 bit 7: the text is on the solder (back) side of the board
TEXT_ON_SILKSCREEN 0x400 bit 10: the text is on the silkscreen layer

Table 15: Text Flags

22 Pin Flags

Parameter Name Default Value Notes
PIN_MASK 0xFFFD
PIN_ALWAYS_SET 0x0001 bit 0: always set

bit 1: always clear
PIN_CONNECTED 0x0004 bit 2: set if pin was found during a connection search
PIN_MOUNTING_HOLE 0x0008 bit 3: set if pin is only a mounting hole (no copper annulus)
PIN_DISPLAY_NAME 0x0020 bit 5: display the pins name
PIN_SELECTED 0x0040 bit 6: pin has been selected
PIN_SQUARE 0x0100 bit 8: pin is drawn as a square
PIN_OCTAGONAL 0x0800 bit 12: set if pin is drawn with an octagonal shape
PIN_ROUND 0x0000
PIN_SHAPE_MASK 0xEEFF

Table 16: Pin Flags

23 Pad Flags

Parameter Name Default Value Notes
PAD_CONNECTED 0x0004 bit 2: set if pad was found during a connection search
PAD_DISPLAY_NAME 0x0020 bit 5: display the pads name
PAD_SELECTED 0x0040 bit 6: pad has been selected
PAD_SOLDER_SIDE 0x0080 bit 7: pad is located on the solder side
PAD_SQUARE 0x0100
PAD_ROUNDED 0x0800 bit 11: pad has rounded corners

Table 17: Pad Flags

13

24 Examples

Listing 2: TO220 Pads
1 #!/ usr/bin/perl
2

3 # Copyright (C) 2007 John C. Luciani Jr.
4

5 # This program may be distributed or modified under the terms of
6 # version 0.2 of the No -Fee Software License published by
7 # John C. Luciani Jr.
8

9 # Places three rounded pads with holes spaced 100 mils.
10

11 use strict;
12 use warnings;
13

14 use Pcb_8;
15

16 my $Pcb = Pcb_8 -> new(debug => 1);
17

18 $Pcb -> element_begin(description => ’TO220 -pads’,
19 output_file =>
20 "tmp/" . ’TO220 -pads’,
21 dim => ’mils’);
22

23 my $pin_num = 1;
24 my @pos = (-100, 0, 0, 0, 100, 0);
25

26 while (@pos) {
27 my ($x , $y) = splice @pos , 0, 2;
28 $Pcb -> element_add_pin_oval(x => $x,
29 y => $y,
30 width => 80,
31 length => 66,
32 name => ’’,
33 pin_number => $pin_num++,
34 clearance => 10,
35 drill_hole => 46,
36 mask => 10);
37 }
38

39

40 $Pcb -> element_output ();

14

Listing 3: SMD Element Creation Example
1 #!/ usr/bin/perl
2

3 # Copyright (C) 2005 John C. Luciani Jr.
4

5 # This program may be distributed or modified under the terms of
6 # version 0.2 of the No -Fee Software License published by
7 # John C. Luciani Jr.
8

9 # Creates the PCB elements specified in the DATA section. The
10 # footprints are for the SMD packages 0402 , 0603 , 0805 , 1206 , 1210 ,
11 # 2010 , 2512 , 0402 , 0504 , 0603 , 0805 , 1206 , 1210 , 1812 , 1825
12

13 use strict;
14 use warnings;
15

16 use Pcb_9;
17

18 my $Pcb = Pcb_9 -> new(debug => 1);
19

20 my @Fields = qw(land_pattern_length land_row_distance
21 land_width land_length
22 land_row_centers grid);
23

24 while (<DATA >) {
25 s/\#.*//; # Remove comments
26 s/^\s*//; # Remove leading spaces
27 s/\s*$//; # Revove trailing spaces
28 next unless length; # Skip empty lines
29 my ($type , @values) = split /\s * \ \ s*/;
30

31 # hash for each footprint
32

33 my %f = map { $_ => shift(@values) } @Fields;
34

35 $Pcb -> element_begin(description => ’SMD’,
36 output_file => "tmp/$type",
37 dim => ’mm’);
38

39 my $x = -$f{land_row_centers} / 2;
40 foreach my $pin_num (1..2) {
41 $Pcb -> element_add_pad_rectangle(width => $f{land_width},
42 length=> $f{land_length},
43 x => $x,
44 y => 0,
45 name => ’input’,
46 mask => 0.254,
47 clearance => 0.254,
48 pin_number => $pin_num);
49 $x += $f{land_row_centers };
50 }
51

52 # Draw a silkscreen rectangle around the component . A silkscreen
53 # specification that all PCB vendors should be able to meet is
54 # 10 mil line width and 10 mil spacing. The silkscreen line width
55 # defaults to 10 mils. To achieve the proper spacing we add
56 # 30 mils (0.762 mm) to the maximum extents of the copper pads
57 # (10 mils on either side of the copper and 2*5 mils for the
58 # silkscreen line).
59

60 my $length = $f{land_pattern_length} + 0.762;
61 my $width = $f{land_width} + 0.762;
62

63 $Pcb -> element_add_rectangle(width => $width ,
64 length=> $length ,
65 x => 0,
66 y => 0);
67

68 # Place the refdes slightly (0.5 mm) above the upper left corner of
69 # the outline rectangle .
70

71 $Pcb -> element_set_text_xy(x => -$length/2,
72 y => -$width /2 - 0.5);

15

73

74 $Pcb -> element_output ();
75

76 }
77

78

79 __DATA__
80

81 # type package name
82 # Z overall length of land pattern
83 # G distance between land rows
84 # X land width
85 # Y land length
86 # C center -to -center spacing between land rows
87 # Grid number of 0.5 mm by 0.5 mm elements
88

89 # type Z G X Y C Grid
90

91 0402 2.20 0.40 0.70 0.90 1.30 2x6
92 0504 2.40 0.40 1.30 1.00 1.40 4x6
93 0603 2.80 0.60 1.00 1.10 1.70 4x6
94 0805 3.20 0.60 1.50 1.30 1.90 4x8
95 1206 4.40 1.20 1.80 1.60 2.80 4x10
96 1210 4.40 1.20 2.70 1.60 2.80 6x10
97 1812 5.80 2.00 3.40 1.90 3.90 8x12
98 1825 5.80 2.00 6.80 1.90 3.90 14x12
99 2010 6.20 2.60 2.70 1.80 4.40 6x14

100 2512 7.40 3.80 3.20 1.80 5.60 8x16

16

Listing 4: Header Connector Creation Example 1
1 #!/ usr/bin/perl
2

3 # Copyright (C) 2005 John C. Luciani Jr.
4

5 # This program may be distributed or modified under the terms of
6 # version 0.2 of the No -Fee Software License published by
7 # John C. Luciani Jr.
8

9 # Creates the PCB elements for Molex 8624 header connectors
10

11 use strict;
12 use warnings;
13

14 use Pcb_8;
15

16 my $Pcb = Pcb_8 -> new(debug => 1);
17

18 my @Fields = qw(circuits body_length pin_row_length);
19

20 my @Def; # definitions that are common to all components
21

22 while (<DATA >) {
23 s/\#.*//; # Remove comments
24 s/^\s*//; # Remove leading spaces
25 s/\s*$//; # Revove trailing spaces
26 next unless length; # Skip empty lines
27

28 # Lines that contain an ’=’ are global definitions .
29

30 push(@Def , $1, $2), next if /(\S+)\s*=\s*(\S.*)/;
31

32 my @values = split /\s * \ \ s*/;
33

34 # hash for each footprint
35

36 my %f = (@Def ,
37 map { $_ => shift(@values) } @Fields);
38

39 $Pcb -> element_begin(description => ’TH’,
40 output_file =>
41 "tmp/" . &package_name($f{circuits}, $f{pin_rows }),
42 dim => ’mils’,
43 pin_one_square => 1);
44

45 my $pin_num = 1;
46 my $pins_per_row = $f{circuits} / 2;
47

48 # lower left corner is pin one
49

50 my $x = -$f{pin_spacing} * ($pins_per_row - 1) / 2;
51 my $y = $f{row_spacing} / 2;
52

53 # These header connectors consist of two rows of pins. With pin
54 # one in the lower left corner we will place pins from left to
55 # right until half the pins are placed. At the halfway point we
56 # will shift to the top row and place pins from right to left.
57

58 while ($pin_num <= $f{circuits }) {
59 $Pcb -> element_add_pin(x => $x, y => $y ,
60 thickness => 66,
61 drill_hole => 46,
62 mask => 10,
63 clearance => 10,
64 pin_number => $pin_num);
65

66 # If this is the last pin in the row then
67 # update the y value otherwise update the x
68 # value. If we are past the halfway point move
69 # left (-) instead of right (+).
70

71 $y *= -1;
72 $x += $f{pin_spacing} if $y > 0;

17

73 $pin_num ++;
74 }
75

76 $Pcb -> element_add_rectangle(width => $f{body_width},
77 length=> $f{body_length},
78 x => 0,
79 y => 0);
80

81

82 $Pcb -> element_set_text_xy(x => -$f{body_length }/2,
83 y => -$f{body_width }/2 - 20);
84

85

86 $Pcb -> element_output ();
87 }
88

89 sub package_name ($$) {
90 my ($circuits , $rows) = @_;
91 sprintf("CON_HDR -254P-%iC -%iR -% iN__Molex_8624 -Series",
92 $circuits/$rows ,
93 $rows ,
94 $circuits);
95 }
96

97 __DATA__
98

99 body_width = 200
100 pin_spacing = 100
101 row_spacing = 100
102 pin_diameter = 35
103 pin_rows = 2
104

105 # circuits body_length pin_row_length
106

107 4 190 100
108 6 290 200
109 8 390 300
110 10 490 400
111 12 590 500
112 14 690 600
113 16 790 700
114 18 890 800
115 20 990 900
116 22 1090 1000
117 24 1 1 9 0 1100
118 26 1 2 9 0 1200
119 28 1 3 9 0 1300
120

121 30 1490 1400
122 32 1590 1500
123 34 1690 1600
124 36 1790 1700
125 38 1890 1800
126 40 1990 1900
127 42 2090 2000
128 44 2190 2100
129 46 2290 2200
130 48 2390 2300
131 50 2490 2400
132 52 2590 2500
133 54 2690 2600
134

135 56 2790 2700
136 58 2890 2800
137 60 2990 2900
138 62 3090 3000
139 64 3190 3100
140 66 3290 3200
141 68 3390 3300
142 70 3490 3400
143 72 3590 3500
144 74 3690 3600
145 76 3790 3700

18

146 78 3890 3800
147 80 3990 3900

19

Listing 5: Header Connector Creation Example 2
1 #!/ usr/bin/perl
2

3 # Copyright (C) 2005 John C. Luciani Jr.
4

5 # This program may be distributed or modified under the terms of
6 # version 0.2 of the No -Fee Software License published by
7 # John C. Luciani Jr.
8

9 # Creates the PCB elements for Molex 8624 header connectors
10

11 use strict;
12 use warnings;
13

14 use Pcb_8;
15

16 my $Pcb = Pcb_8 -> new(debug => 0);
17

18 my @Fields = qw(circuits body_length pin_row_length);
19

20 my @Def; # definitions that are common to all components
21

22 while (<DATA >) {
23 s/\#.*//; # Remove comments
24 s/^\s*//; # Remove leading spaces
25 s/\s*$//; # Revove trailing spaces
26 next unless length; # Skip empty lines
27

28 # Lines that contain an ’=’ are global definitions .
29

30 push(@Def , $1, $2), next if /(\S+)\s*=\s*(\S.*)/;
31

32 my @values = split /\s * \ \ s*/;
33

34 # hash for each footprint
35

36 my %f = (@Def ,
37 map { $_ => shift(@values) } @Fields);
38

39 $Pcb -> element_begin(description => ’TH’,
40 output_file =>
41 "tmp/" . &package_name($f{circuits}, $f{pin_rows }),
42 dim => ’mils’,
43 pin_one_square => 1);
44

45 my $pin_num = 1;
46 my $pins_per_row = $f{circuits} / 2;
47

48 # lower left corner is pin one
49

50 my $x0 = -$f{pin_spacing} * ($pins_per_row - 1) / 2;
51 my $y0 = $f{row_spacing} / 2;
52

53 my $x = $x0;
54 my $y = $y0;
55

56 # These header connectors consist of two rows of pins. With pin
57 # one in the lower left corner we will place pins from left to
58 # right until half the pins are placed. At the halfway point we
59 # will shift to the top row and place pins from right to left.
60

61 while ($pin_num <= $f{circuits }) {
62 $Pcb -> element_add_pin(x => $x, y => $y ,
63 thickness => $f{pad_thickness},
64 drill_hole => $f{drill_hole},
65 mask => 10,
66 clearance => 10,
67 pin_number => $pin_num);
68

69 # Header connectors usually have pins numbered from left to
70 # right with odd numbers on the bottom and even numbers on the
71 # top. Since this example program could be used for connectors
72 # other than headers three pin - numbering options are provided.

20

73

74 # header - two rows of pins. numbers increase from left to right.
75 # odd numbered pins on the bottom , even on the top.
76

77 # dip - two rows of pins. starting in the lower left corner
78 # numbers increase left to right along the bottom row
79 # and right to left along the top row.
80

81 # power - two rows of pins. numbers increase from left to right
82 # starting on the bottom row and then continue left to right
83 # along the top row.
84

85 if ($f{pin_numbering_scheme} eq ’header ’) {
86 $y *= -1;
87 $x += $f{pin_spacing} if $y > 0;
88 } elsif ($f{pin_numbering_scheme} eq ’dip’) {
89 if ($pin_num == $pins_per_row) {
90 $y -= $f{row_spacing };
91 } else {
92 $x += $pin_num > $pins_per_row
93 ? -$f{pin_spacing}
94 : $f{pin_spacing };
95 }
96 } elsif ($f{pin_numbering_scheme} eq ’power’) {
97 if ($pin_num == $pins_per_row) {
98 $y -= $f{row_spacing };
99 $x = $x0;

100 } else {
101 $x += $f{pin_spacing}
102 }
103 } else {
104 die "unknown pin numbering scheme $f{pin_numbering_scheme } ";
105 }
106 $pin_num ++;
107 }
108

109 $Pcb -> element_add_rectangle(width => $f{body_width},
110 length=> $f{body_length},
111 x => 0,
112 y => 0);
113

114

115 $Pcb -> element_set_text_xy(x => -$f{body_length }/2,
116 y => -$f{body_width }/2 - 20);
117

118

119 $Pcb -> element_output ();
120 }
121

122 sub package_name ($$) {
123 my ($circuits , $rows) = @_;
124 sprintf("CON_HDR -254P-%iC -%iR -% iN__Molex_8624 -Series",
125 $circuits/$rows ,
126 $rows ,
127 $circuits);
128 }
129

130 __DATA__
131

132 pad_thickness = 66
133 drill_hole = 46
134 pin_numbering_scheme = header
135 body_width = 200
136 pin_spacing = 100
137 row_spacing = 100
138 pin_diameter = 35
139 pin_rows = 2
140

141 # circuits body_length pin_row_length
142

143 4 190 100
144 6 290 200
145 8 390 300

21

146 10 490 400
147 12 590 500
148 14 690 600
149 16 790 700
150 18 890 800
151 20 990 900
152 22 1090 1000
153 24 1 1 9 0 1100
154 26 1 2 9 0 1200
155 28 1 3 9 0 1300
156

157 30 1490 1400
158 32 1590 1500
159 34 1690 1600
160 36 1790 1700
161 38 1890 1800
162 40 1990 1900
163 42 2090 2000
164 44 2190 2100
165 46 2290 2200
166 48 2390 2300
167 50 2490 2400
168 52 2590 2500
169 54 2690 2600
170

171 56 2790 2700
172 58 2890 2800
173 60 2990 2900
174 62 3090 3000
175 64 3190 3100
176 66 3290 3200
177 68 3390 3300
178 70 3490 3400
179 72 3590 3500
180 74 3690 3600
181 76 3790 3700
182 78 3890 3800
183 80 3990 3900

22

Listing 6: TQFN Element Creation Example
1 #!/ usr/bin/perl
2

3 # Copyright (C) 2005 John C. Luciani Jr.
4

5 # This program may be distributed or modified under the terms of
6 # version 0.2 of the No -Fee Software License published by
7 # John C. Luciani Jr.
8

9 # Creates Maxim TQFN style packages.
10

11 # Data is from the Maxim 21 -0140 Rev G and Maxim 21 -10159 Rev A
12 # specifications .
13

14 # The TQFN (thin quad flat no -lead) packages have solder terminations
15 # on four sides and a thermal pad in the center. The two denser
16 # packages (T3255 -2 and T4055 -1) require smaller pads on the corner
17 # terminations .
18

19 use strict;
20 use warnings;
21 use Carp;
22

23 use Pcb_8; # routines to create PCB elements (packages)
24

25 my $Pcb = Pcb_8 -> new(debug => 0);
26

27 # The specifications to generate these symbols is in the __DATA__
28 # section of this file. Each line can be either blank , contain a global
29 # definition or contain a package data record.
30

31 # Global definitions are saved in @Def.
32 # The field names for the package data record are in @Fields.
33

34 my @Def; # Global definitions saved as key -value pairs.
35 my @Fields = qw(package_code
36 pin_count
37 pad_spacing
38 pad_width
39 pad_length
40 corner_pad_length
41 thermal_pad_width
42 thermal_pad_length);
43

44 # Read the __DATA__ section and output a PCB footprint everytime a
45 # package data record is read.
46

47 while (<DATA >) {
48 last if /^ __END__$ /;
49 s/\#.*//; # Remove comments
50 s/^\s*//; # Remove leading spaces
51 s/\s*$//; # Revove trailing spaces
52 next unless length; # Skip empty lines
53

54 # Lines that contain an ’=’ are global definitions . The key (lhs)
55 # and value (rhs) are pushed onto @Def.
56

57 push(@Def , $1, $2), next if /(\S+)\s*=\s*(\S.*)/;
58

59 # A line with non -zero length that is not a global definition is a
60 # package data record. We split the package record and create a
61 # hash %p that contains key -value pairs for all of the global
62 # definitions and the current record.
63

64 my @values = split /\s * \ \ s*/;
65 my %p = (@Def ,
66 map { $_ => shift(@values) } @Fields);
67

68 # Create a simple id using the package name , package code and pin
69 # count and then start a new element.
70

71 $p{id} = join(’-’, map { $p{$_} } qw(package_name package_code pin_count));
72 $Pcb -> element_begin(description => $p{id},

23

73 output_file => "tmp/$p{id}",
74 dim => ’mm’);
75 print "$p{id}\n";
76

77 # Create a few convenient specifications from data in the package
78 # data record hash. The convenetions for these packages is part
79 # centroid at (0 ,0) and pin one is in the lower left corner.
80

81 # Corner pads on some of the parts are shorter. This condition is
82 # handled by creating a new pad length and some pad center
83 # offsets.
84

85 $p{num_pads_per_side} = $p{pin_count} / 4; # leads on four sides
86 $p{corner_pad_length} = $p{pad_length} if $p{corner_pad_length} eq ’’;
87

88 my $row_center = ($p{body_width_max} - $p{pad_length }) / 2;
89 my $row_end = ($p{num_pads_per_side} - 1) * $p{pad_spacing} / 2;
90 my $corner_offset = ($p{pad_length} - $p{corner_pad_length }) / 2;
91

92 # @xy contains the staring locations for a row of pads.
93 # @inc contains increment values for x and y and offsets for the
94 # the corner pads. for each row of pads either x or y is incremented .
95

96 my @xy = (x => -$row_center , y => -$row_end ,
97 x => -$row_end , y => $row_center ,
98 x => $row_center , y => $row_end ,
99 x => $row_end , y => -$row_center);

100

101 my @inc= (yinc => $p{pad_spacing}, xoffset => -$corner_offset ,
102 xinc => $p{pad_spacing}, yoffset => $corner_offset ,
103 yinc => -$p{pad_spacing}, xoffset => $corner_offset ,
104 xinc => -$p{pad_spacing}, yoffset => -$corner_offset);
105

106 # create the rows of pads
107

108 &set_pin_num (1);
109

110 while (@xy) {
111 my %xy = (splice(@inc , 0, 4),
112 map { $_ => $p{$_} } qw(pad_spacing pad_width pad_length));
113

114 &draw_row_of_pads(splice(@xy , 0, 4),
115 %xy ,
116 pad_length => $p{corner_pad_length},
117 num_pads => 1);
118

119 # no offsets for pads that aren ’t on the corners
120

121 &draw_row_of_pads (%xy ,
122 xoffset => 0,
123 yoffset => 0,
124 num_pads => $p{num_pads_per_side} - 2);
125

126 &draw_row_of_pads (%xy ,
127 pad_length => $p{corner_pad_length},
128 num_pads => 1);
129 }
130

131 # Add the thermal pad
132

133 $Pcb -> element_add_pad_rectangle(x => 0,
134 y => 0,
135 length => $p{thermal_pad_length},
136 width => $p{thermal_pad_width},
137 name => ’’,
138 pin_number => $p{pin_count} + 1);
139

140 # add the pin one dot
141

142 my $dot_pos = $row_center + 0.254; #$p{ pad_length } / 2;
143

144 $Pcb -> element_add_arc(x => -$dot_pos ,
145 y => -$dot_pos ,

24

146 width => $p{pad_width} / 2,
147 height=> $p{pad_width} / 2,
148 start_angle => 0,
149 delta_angle => 360,
150 thickness => 0.254); # 10 mil lines
151

152 # draw a silksreen rectangle around the package body.
153

154 $Pcb -> element_add_rectangle(x => 0,
155 y => 0,
156 width => $p{body_width_max} + 1,
157 length=> $p{body_length_max} + 1);
158

159 # Set the position of the reference designator to the upper left corner
160

161 $Pcb -> element_set_text_xy(x => -$p{body_length_max} / 2 - 1,
162 y => -$p{body_width_max} / 2 - 1);
163

164 # Set the centroid mark and output the element
165

166 $Pcb -> element_output;
167

168 }
169

170 # $v{x} current x location
171 # $v{y} current y location
172 # $v{pin_num} current pin number
173

174 my %v; # values for draw_row_of_pads
175

176 sub set_pin_num ($) {
177 $v{pin_num} = shift;
178 }
179

180 sub draw_row_of_pads {
181 my %p = (xoffset => 0,
182 yoffset => 0,
183 @_);
184

185 foreach (qw(pin_num x y)) {
186 $v{$_} = $p{$_} if defined $p{$_};
187 }
188

189 # swap pad length and width for horizontal rows
190

191 ($p{pad_width}, $p{pad_length }) = ($p{pad_length}, $p{pad_width })
192 if defined $p{xinc};
193

194 foreach (1..$p{num_pads }) {
195 $Pcb -> element_add_pad_rectangle(x => $v{x} + $p{xoffset},
196 y => $v{y} + $p{yoffset},
197 width => $p{pad_width},
198 length => $p{pad_length},
199 name => ’’,
200 pin_number => $v{pin_num }++);
201 $v{x} += $p{xinc} if defined $p{xinc};
202 $v{y} += $p{yinc} if defined $p{yinc};
203 }
204 }
205

206

207

208

209 1;
210

211

212

213 __DATA__
214 body_width_min = 4.9 # E
215 body_width = 5.0 # E
216 body_width_max = 5.1 # E
217 body_length_min = 4.9 # D
218 body_length = 5.0 # D

25

219 body_length_max = 5.1 # D
220

221 component_type = ic
222 package_name = TQFN -Maxim -5x5
223

224 # Final pad_length = pad_lenth + body_width_max - body_width_min
225

226 # T1655 -1 e (nom) b, L, E2 , D2 (max)
227 # T2055 -2 e (nom) b (max) L, E2 , D2 (nom)
228 # T2055 -5 e (nom) b (max) L (min) E2 , D2 (nom)
229

230 # T2855 -1 e (nom) b (max) L (min) E2 , D2 (nom)
231 # T2855 -2 e (nom) b (max) L (min) E2 , D2 (max)
232

233 # T3255 -2 e (nom) b (max) L (max) E2 , D2 (max)
234 # T4055 -1 e (nom) b (min) L (nom) E2 , D2 (min)
235

236

237 # e b L L1 E2 D2
238 T1655 -1 16 0.8 0.35 0.5 3.2 3.2
239 T2055 -2 20 0.65 0.35 0.55 3.10 3.10
240 T2055 -5 20 0.65 0.35 0.45 3.25 3.25
241

242 T2855 -1 28 0.50 0.30 0.45 3.25 3.25
243 T2855 -2 28 0.50 0.30 0.45 2.8 2.8
244

245

246 T3255 -2 32 0.50 0.30 0.5 0.25 3.2 3.2
247 T4055 -1 40 0.40 0.2 0.5 0.25 3.2 3.2
248

249 # Style (adapted from the Perl Cookbook , First Edition , Recipe 12.4)
250

251 # 1. Names of functions and local variables are all lowercase.
252 # 2. The program ’s persistent variables (either file lexicals
253 # or package globals) are capitalized .
254 # 3. Identifiers with multiple words have each of these
255 # separated by an underscore to make it easier to read.
256 # 4. Constants are all uppercase.
257 # 5. If the arrow operator (->) is followed by either a
258 # method name or a variable containing a method name then
259 # there is a space before and after the operator.

26

	Pcb_9
	new
	element_begin
	element_output
	element_add_line
	element_add_arc
	element_add_pin
	element_add_pad
	element_add_pad_rectangle
	element_add_pin_oval
	element_add_mark
	element_add_lines
	element_add_rectangle
	element_set_text_xy
	element_set
	element_get
	get
	element_dump
	References
	Change Log
	Element Flags
	Text Flags
	Pin Flags
	Pad Flags
	Examples

